
## University of Ljubljana Faculty of Mechanical Engineering

## **Advanced Strength of Materials**



Lectures: 30h

Tutorials: 10h

Project: 65h



Lang. :

**5 ECTS** 

## **Objectives**

The objectives of this course are to learn how to use advanced mathematical tools in mechanics, learn how to build physical and mathematical models of complex stress-strain states in deformable bodies, rheological responses and to learn how to design statically multiply indeterminate structures. With this course the students will get the following competences:

ability to use advanced mathematical tools in mechanics,

Labs: 20h

- ability to build physical and mathematical models of complex stress-strain states in deformable bodies,
- design statically multiply indeterminate structures.

| Programme            | Obligations for following and completing the course; Presentation of relevant study literature; Overview of course topics; Concept of a 3D continuum; Cauchy's definition of stress vector, normal and shear stresses, static equilibrium on a finite volume in a deformed body, Cauchy's stress theorem; Stress tensors (Cauchy, 1st Piola-Kirchhoff, 2nd Piola-Kirchhoff, Biot, etc.); Deviatoric and hydrostatic part of the stress tensor; Principal stresses and maximum shear stresses in 3D; Invariants of the stress tensor and invariants of the deviatoric part of the stress tensor; Strain theory; Displacement vector, deformation gradient, deformation tensors, small/finite strain theory; Geometric interpretation of the small strain tensor; Compatibility conditions for strains; Elastic strain energy of a body due to external loads; Energy methods, strain energy density per unit volume; Principle of virtual work; Ideally elastic material, Green elasticity; Material anisotropy; Isotropy, Linearly elastic material; Determining material constants from experiments; Hooke's law, Hyperelasticity; Volumetric and distortion work/energy; Effects of temperature; Navier-Lame equations; Specific stress-strain states; Airy stress function; Computer simulations with FEM; Complex real-life examples and case studies |
|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Prerequisites        | Meeting the enrolment conditions for the Master's study programme of Mechanical Engineering -<br>Research and Development program.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Learning<br>outcomes | <ul> <li>Thorough professional theoretical and practical knowledge in a selected field of expertise that is supported with a broad theoretical and methodological basis.</li> <li>In-depth understanding of stress and strain states in general deformable bodies</li> <li>In-depth understanding of the failure mechanisms in structural elements</li> <li>In-depth understanding of mathematical structure of rheological models</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Assessment           | <ul> <li>20% Examination (lectures - theory)</li> <li>60% Examination (exercises - design calculations)</li> <li>10% Laboratory exercises</li> <li>10% Homework</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Literature           | <ul> <li>J.N. Reddy: An Introduction to Continuum Mechanics</li> <li>A. Bower: Introduction to continuum mechanics</li> <li>W.D. Lai, M. Rubin, E. Krempl: Introduction to Continuum Mechanics</li> <li>Y.C. Fung: First Course in Continuum Mechanics</li> <li>M.E. Gurtin: An Introduction to Continuum Mechanics</li> <li>G.T. Mase, G.E. Mase: Continuum mechanics for engineers</li> <li>G.E. Mase: Schaum's outline of theory and problems of continuum mechanics</li> <li>S. Timoshenko: Theory of elasticity.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

- G.A. Holzapfel: Nonlinear Solid Mechanics: A Continuum Approach for Eng.
- R.W. Ogden: Non-Linear Elastic Deformations