

Design of Advanced Systems

Lecturer:	J. Klemenc, M. Nagode	
200000000	J,,	

Lectures: 30h	Tutorials: 6h	Labs: 24h	Project: 0h	Lang. :	

Objectives

- 1. To acquire a thorough insight in advanced design methods that enable consequent R&D processes of complex products.
- 2. To learn a thorough theoretical basics of selected statistical methods for product design.
- 3. To train approaches for solving design challenges in the case of random operating and environmental conditions.
- 4. To acquire skills of searching for additional design informations in the case of limited input data and/or informations.
- 5. To acquire team-work skills.

Programme	Prerequisites for design of complex systems. Effectiveness and value of product. Statistical analysis of complex systems (basics). Assuring the functional performance of a complex system. Failure modes and failure models for complex systems and their components. Design of advanced and complex systems. Product maintainability as a prerequisite for its availability. Case study of a R&D process for a complex high-series and low series products - selected topics from a passanger-car development process and from a development of an injectiom-molding tool.
Prerequisites	In order to successfully achieve this course, the students must have:
	 Meeting the enrolment conditions for the Master's study programme of Mechanical Engineering - Research and Development program.
Learning outcomes	 Knowledge: Thorough theoretical, methodological and analytical knowledge with elements of a research work that form a basis for very demanding professional work: Understanding a relationship between the operating conditions, environment and function of the complex product. Understanding a random nature of the product's effectiveness and value. Understanding a theorethical background of the design methods for complex products that are based on a statistical approach.
	 <u>Skills:</u> Mastering very demanding and complex work processes and methodological tools in specialised professional fields: Ability of analytical and numerical prediction of the product's operation in unpredictable operating conditions. Ability of unique innovations and critical reflections: Ability of research in the field of the complex-product effectiveness
Assessment	 Theoretical knowledge (written colloquia and exam with an optional oral examination): 50%,
	 Auditorial exercises (seminar reports with presentations): 30%,
	 Written examination of practical knowledge that was acquired in exercises: 20%.
Literature	 Ebeling C.E. An introduction to reliability and maintainability engineering – 2nd edition. Waveland press inc., 2010. Andrews J.D., Moss T.R. Reliability and risk assessment - 2nd edition. John Wiley & Sons, 2002. Pahl G., Beitz W., Feldhusen J., Grote K.H. Engineering Design - A Systematic Approach. Springer Verlag, 2007
	4. Part and Mold Design - A Design Guide. Bayer Corporation, 2000.