

## Noise, Vibrations and Acoustic engineering

## **5 ECTS**

## Lecturer: J. Prezelj

| Lectures: 30h | Tutorials: 2h | Labs: 28h |
|---------------|---------------|-----------|
|               |               |           |

Project: 0h



## **Objectives**

This course is designed to make complex acoustic concepts easy to understand, engaging, and highly relevant to your future career in engineering, environmental sciences, and technology. Through interactive lessons, real-world case studies, and hands-on projects, you'll develop highly required skills that are in high demand across various industries. By the end of this course, you will:

- Master the fundamental physics and mathematics behind sound and vibrations without getting lost in equations.
- Learn practical measurement techniques for analyzing sound, noise, intensity, reverberation, and noise control. These skills are directly applicable to real-world problems.
- Gain hands-on experience with AI-driven sound recognition, acoustic monitoring, and digital signal processing, preparing you for careers in modern engineering and smart technology environment.
- Understand how sound interacts with materials, spaces, and human perception. This is critical knowledge for designing high value-added products, safer machines, quieter cities, and immersive audio experiences.

Be a part of an interdisciplinary learning experience, where acoustics connects with mechanical engineering, AI, environmental sciences, and product design.

| Programme            | 1. <b>The Science of Sound:</b> What is sound? How does it move through different materials?                                                                                                                                                                   |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                    | Discover the fundamentals of acoustics and their relevance in nature, technology, and industry.                                                                                                                                                                |
|                      | 2. Noise & vibration in Engineering: Learn now sound and vibration affect machinery, buildings, and vehicles, and why noise control is critical in modern product design.                                                                                      |
|                      | 3. Acoustic Measurement Techniques: Get hands-on experience with cutting-edge measurement tools,                                                                                                                                                               |
|                      | <ul> <li>4. AI &amp; Sound Recognition: Explore how artificial intelligence is transforming acoustics, from speech recognition to smart noise reduction in cars, smart devices, and industrial monitoring.</li> </ul>                                          |
|                      | 5. <b>Psychoacoustics</b> : How Humans Perceive Sound – Why do some sounds feel pleasant while others are annoying? Learn how sound influences human perception, product design, and user experience.                                                          |
|                      | 6. Noise Pollution & Environmental Acoustics: Understand the impact of noise on health, wildlife, and urban life, and evaluate strategies for designing quiete cities.                                                                                         |
|                      | <ol> <li>Ultrasound &amp; High-Frequency Acoustics: Discover how ultrasound is used in medicine, engineering,<br/>and material testing including non-invasive diagnostics and industrial applications</li> </ol>                                               |
|                      | 8. <b>Sound Absorption &amp; Insulation</b> : Learn how materials can absorb and block sound and apply this knowledge to designing effective noise barriers and quiet spaces.                                                                                  |
|                      | 9. Digital Signal Processing: Master essential techniques such as Fourier transforms, Convolution,                                                                                                                                                             |
|                      | <ol> <li>Smart Sound Engineering: Apply computational models to simulate sound behavior in cars, buildings, and outdoor environments, preparing you for future industry challenges.</li> </ol>                                                                 |
| Prerequisite         | <b>S</b> Meeting the enrolment conditions for the Master's study programme of Mechanical Engineering - Research and Development program.                                                                                                                       |
| Learning<br>outcomes | Theoretical and practical knowledge in Acoustics, Artificial Inteligence, Digital Signal Processing, Noise Control, Psychoacoustics, equipping you with essential skills to analyze, model, and apply sound-related technologies across various industries to: |
|                      | <ul> <li>apply cutting-edge methods to measure, model, and control sound, enabling you to design<br/>high-value products, optimize noise reduction, and enhance acoustic environments</li> </ul>                                                               |
|                      | <ul> <li>bridge physics, engineering, and AI, making you a strong candidate for research, innovation, and high-tech careers.</li> </ul>                                                                                                                        |
| Assessment           | ■ Theory – 40 %                                                                                                                                                                                                                                                |
|                      | <ul> <li>Coursework – 20 %</li> </ul>                                                                                                                                                                                                                          |
|                      | <ul> <li>Reporting on experiments – 20 %</li> </ul>                                                                                                                                                                                                            |
|                      | <ul> <li>Seminar with content from laboratory exercises – 20 %</li> </ul>                                                                                                                                                                                      |
| Literature           | <ul> <li>D.R. Raichel, The science and application of Acoustics, Springer, 2000</li> <li>G. Müller, M. Möser, Handbook of Engineering Acoustics, Springer Verlag, 2013</li> </ul>                                                                              |
|                      | <ul> <li>M. Möser, S. Zimmermann, R. Ellis, Engineering Acoustics: An Introduction to Noise<br/>Control, Springer Verlag, 2004</li> </ul>                                                                                                                      |